Statistics
Lecture 4

class QE 5
Given $n=10, \sum x=60, \quad x^{2}=360$
find

1) $\bar{x}=\frac{\sum x}{n}=\frac{60}{70}=6$
2) $S^{2}=\frac{n \sum x^{2}-(\Sigma x)^{2}}{n(n-1)}=\frac{10 \cdot 360-60^{2}}{10(10-1)}=\frac{3600-3600}{90}$

$$
\begin{aligned}
& 90 \\
& =\frac{0}{90}=0 .
\end{aligned}
$$

3) $S=\sqrt{S^{2}}=\sqrt{0}=0 \sqrt{ }$ since $S=0$, AIl data elements are the same as $\bar{x}=6$.

I randomly Selected 25 students, their ages are given below:

34	28	18	20	20
19	35	40	42	25
20	30	30	30	40
35	31	24	29	25
23	50	42	38	26

1) clear all lists
[nd) 14 iclearAll lists
2) Reset all lists. [Enter

STATI Edit
$5:$ Selupeditor Enter
3) Store this data in L1. STAT Edit I: Edit
4) quit \& clear screen

11
34 Enter
28 Enter
26 enter

Sep 19-6:55 PM

Sort L1, then View it, and make Stem Plot STAT Edit end Enter

2:Sortac
and 1 Enter $\left\{\begin{array}{ccccc}18 & 19 & 20 & 20 & 20 \\ & \rightarrow & \square\end{array}\right.$

$$
\begin{array}{l|l}
1 & 89 \\
2 & 0003455689 \\
3 & 00014558 \\
4 & 0022 \\
5 & 0
\end{array}
$$

find \bar{x} \& S. Round to whole $\# . \quad \begin{aligned} & \bar{x}=30 \\ & S=9\end{aligned}$

$\operatorname{Min}=18$
$Q_{1}=23.5$
Med. $=30$

$$
Q_{3}=36.5
$$

$\max =50$

5-Number Summary,

1) Box Plot

2) $I Q R=Q_{3}-Q_{1}=36.5-23.5=13$
3) upper fence $=Q_{3}+1.5(I Q R)=36.5+1.5(13)=56$

Lower fence $=Q_{1}-1.5(I Q R)=23.5-1.5(B)=4$
No outliers
clear all lists and 4 :cleardllists

Sep 19-7:20 PM

Suppose $n=120, \bar{x}=58$, and $S=6$.

1) find the usual Range $\rightarrow \bar{x} \pm 2 S$
$\begin{aligned} \text { Assuming data is symmetric } & =58 \pm 12 \\ & =46 \text { To } 70\end{aligned}$
2) How many data elements are above 70?

$$
\begin{array}{ccccc}
2.5 \% & 95 \% & 2.5 \% & 2.51 .0 f 120 \\
\hline 46 & 70 & =3
\end{array}
$$

3) What 1. of data elements are below 46 ?

$$
2.5 \%
$$

4) Find Z-Score for data element 80.

$$
Z=\frac{x-\bar{x}}{s}=\frac{80-58}{6}=\frac{22}{6}=3.667
$$

unusual
4) find data element with z-Score of -1.5 .

$$
\begin{gathered}
Z=\frac{x-\bar{x}}{s} \quad-1.5=\frac{x-58}{6} \\
\text { Cross-multiply } \quad-2 \leq z \leq 2 \\
x-58=6(-1.5) \quad \text { usual } \\
x-58=-9 \quad x=49
\end{gathered}
$$

Sep 19-7:46 PM

Percentile
Notation is P_{k}. Data must be Sorted

$$
P_{10} \rightarrow 10 \% \text { below } \varepsilon 90 \% \text { above }
$$

$P_{80} \rightarrow 80 \%$ below $\dot{\Sigma} 20 \%$ above

$P_{K} \rightarrow \dot{k} \%$ below $\dot{\xi} .(100-K) \%$ above

How to find P_{k} :
Location $L=\frac{K}{100} \cdot n$
If decimal \rightarrow Round-up, $P_{k}=$ Lt h element
If whole $\# \rightarrow P_{K}=\frac{\text { Lt h element + Nextone }}{2}$
189
find P_{20}
20003455689
$L=\frac{20}{100} \cdot 25=5$
300014558
4
5
$P_{20}=\frac{5 \text { th element }+ \text { Nextone }}{2}$
find P_{65}

$$
=\frac{20+23}{2}=21.5
$$

$L=\frac{65}{100} \cdot 25=16.25 \rightarrow L=17$

$$
P_{65}=\text { 17thelement }=34
$$

Sep 19-8:05 PM

| 1 | 89 |
| :--- | :--- | :--- |
| 2 | 0003455689 |
| 3 | 00014558 |
| 4 | 0022 |
| 5 | 0 |

Doing Reverse:
Sind K Such that $P_{K}=40$

$$
k=\frac{B}{n} \cdot 100, \text { Round to } \begin{aligned}
& \text { whole } \%
\end{aligned}
$$

$$
k=\frac{20}{25} \cdot 100=80
$$

find K Such that $P_{\text {Below }} P_{k}=25$

$$
K=\frac{B}{n} \cdot 100=\frac{7}{25} \cdot 100=28 \rightarrow P_{28}=25
$$

> I randomly Selected 24 exams, here are the Scores:
> find $\bar{x} \dot{\varepsilon}, S$
> $\bar{x}=79.792 \approx 80$
> $S=12.176 \approx 12$
> $\begin{array}{ll}d^{n}=24 & M_{\text {in }}=58 \\ Q_{1}=70 \\ d & M_{\text {ed }}=79 \\ d & Q_{3}=89 \\ \text { Max }=100\end{array}$
> $S^{2}=\frac{81839}{552}$

Sep 19-8:14 PM

Working with ordered-Pairs:

x	y	x^{2}	y^{2}	$x y$
$\checkmark 1$	4	1	16	4
\checkmark	7	4	49	14
J	2	6	36	12
J	3	10	9	100

$$
\begin{gathered}
\sum x=8 \checkmark \\
\sum x^{2}=18 \checkmark \\
n=4 \checkmark \\
\sum y=27
\end{gathered}
$$

clear all lists

$$
\begin{aligned}
& x \rightarrow L 1, y \rightarrow L 2 \\
& \text { STAT } \rightarrow \text { CALl } \\
& \text { Menu }\left\{\begin{array}{l}
\text { list: L1 } \\
\text { Ylist:L2 } \\
\text { Freplist: Blank } \\
\text { calculate] }
\end{array}\right. \text { Nomen }
\end{aligned}
$$

Consider the table below

$$
\begin{array}{l|l}
x & y \\
\hline 2 & 5 \\
3 & 8 \\
3 & 10 \\
4 & 10 \\
5 & 12
\end{array}
$$

$x \rightarrow L 1, y \rightarrow L 2$, find

$$
\begin{array}{cc}
\sum x=17 & \sum y=45 \\
\sum x^{2}=63 & \sum y^{2}=433 \\
n=5 & \sum x y=164
\end{array}
$$

Sep 19-8:43 PM

Class QZ 6
Consider the 5-Number Summary give below $\begin{array}{lllll}5 & 50 & 60 & 64 & 100\end{array}$

1) Draw Box Plot

$$
\text { 2) } I Q R=Q_{3}-Q_{1}=64-50=14
$$

3) upper fence
4) Lower fence

$$
=Q_{3}+1.5(I Q R)=64+.5(14)=85=Q_{1}-1.5(I Q R)=50-1.5(14)
$$

5) Discuss range for possible outliers. 29 5 to 29 and 85 to 100

Sep 19-9:03 PM

